[数学]慶應義塾大学医学部2012前期「1」

慶應義塾大学医学部2012前期「1」

問題文


以下の文章の空欄sこ適切な数,式または行列を入れて文章を完成させなさい。ただし
設問(2)において,適切な行列が複数個ある場合は,それらをすべて記入しなさい。
(1)a1=1,a2=4,an+2=-an+1+2an。(n=1,2,3,…)によって
定められる数列{an}の一般項は(あ)である。
(2)行列(acbd)の表す1次変換により点B(1,1)と点c(1,0)はそれぞれ
点B'と点C'に移されるとする。またO(0,0)を原点とする。OB'ベクトル=2OBベクトル、かつ
△OB'C'が正三角形となるような行列Aをすべて求めるとA=(い)である。

(3)媒介変数tを用いて
x=(et+3e-t)/2
y=et-2e-t
と表される曲線Cの方程式は
(う)x2+(え)xy+(お)y2=25
である。
また曲線cの接線の傾きは、t=(か)に対応する点において-2となる。
(4)α>1を実数とする。0≦x≦1を定義域とする関数f(x)=x-x2が最大値を
とる点をx(α)とするとx(α)=(き)である。またlim(a→1+0)x(α)=(く)である。

(1)
三項間漸化式の基本問題ですね

三項間漸化式は与えられた式を二通の等比数列型に変形して解くのが基本でした



(2)
行列についての条件を計算します


正三角形ですが
1つの辺を60°回転させたものが正三角形のもう一辺となるわけで
行列には回転行列という便利なものがありますからそれを使います


この値を代入するわけや



(3)
tの部分を消すためにうまく変形するわけや
分母が0かどうかは確認はしてませんが、穴埋めなので問題ないです



傾きについてはdy/dxを計算すればいいです
媒介変数tに対して
dy/dx = (dy/dt)・(dt/dx)
とできる




(4)
最大値をとるxの値ですが増減表をかくために関数の形をかんがえました


最大値をとるxは一つしかなく、
f'(x)=0となるxであることが確認されたわけです



さらにx(α)の形から有名な極限の変形を思い出して、それに向かって変形します


関連記事


2013-07-04 : 数学過去問 : コメント : 0 : トラックバック : 0
Pagetop
コメントの投稿
非公開コメント

Pagetop
« next  ホーム  prev »

プロフィール

ゆかベクトル、せき

Author:ゆかベクトル、せき

はじまり

↑初めて受けた代々木医学部模試
6個のW(W判定+White判定)から始まったD(daigakusei)のブログ

素直(?)な目線で
受験問題を解いたりしてみています。
0点から名前掲載まで幅広く経験しています。


はじめての模試の心境と成績表概略


大阪市立大学に在籍中です

質問やご指摘等ありましたら下のメッセージボックスかコメント、あるいはメールをこちら↓にお願いいたします
yukavector☆gmail.com(☆を@にしてください)

大学受験 ブログランキングへ

検索フォーム

お知らせ

【このブログについて】
『1』解説は「続きを読む」をクリック

アクセス急増リンクまとめ 【よくある疑問】 【医学部への参考書】 【0から古文】

スポンサードリンク

アクセスランキング

[ジャンルランキング]
学校・教育
175位
アクセスランキングを見る>>

[サブジャンルランキング]
受験
45位
アクセスランキングを見る>>

FC2カウンター

ブロとも申請フォーム

この人とブロともになる